详解MLCC的四个主要电气特性

作者:木子

多层陶瓷电容MLCC,作为主要的滤波元件,从选型上讲,通常只需关注尺寸,容值,耐压,温度特性及精度等规格。但是具体到产品的实际电路应用,我们需要对比不同型号下的电气特性参数,以下作进一步说明。

一、    容值,绝缘阻抗I.R.及损耗因素D.F.
村田的陶瓷电容小到pF级,大到几百uF级,大容值滤低频,多用于电源线上的去耦电路,减少电路纹波;小容值滤高频,多用于射频端匹配电路上。

理想电容的绝缘阻抗无限大,但是实际上电容存在寄生参数,故实际的绝缘阻抗有限,一般在兆欧级别,具体参见对应型号的规格书。

损耗因素(损耗角正切)=有功功率/无功功率=漏电流/充电电流=1/Q(品质因素)
D.F.=2*π*f*C*R (R为等效串联电阻)

二、    直流DC偏压特性和交流AC偏压特性

静电容量随着施加的交流或直流电压发生变化的特性称为“AC(交流)偏压特性”和“DC(直流)偏压特性”,一类材料温度补偿性的AC/DC曲线基本为水平线,二类高介电常数型材料对应曲线如下图:

直流DC偏压特性和交流AC偏压特性

这是因为高介电常数型电容的陶瓷材料的主成分是钛酸钡BaTiO3,其晶体结构为正立方体。

当施加交流电压后,中间的Ti离子随着AC 电压的方向将进行移动,进行充电和放电,就产生了容量。而施加直流电压后,Ti 离子随着DC 电压的方向移动,使之偏向一边,难以移动,容值下降。Ti 离子的移动对于MLCC的有效容量是很重要的。

一类材料温度补偿性的AC/DC曲线基本为水平线,二类高介电常数型材料对应曲线

三、    阻抗|Z|/等效串联电阻ESR-频率特性
了解电容器的频率特性,可对电源线消除噪音能力和抑制电压波动能力进行判断,是设计时不可或缺的重要参数。频率越高,越不能忽视寄生成分ESR和 ESL 的影响。需要选择 低ESR 和低ESL 的产品以减少损耗。

真实电容存在寄生参数,其简化的等效原理图如下:

等效原理图

ESR: 电介质(低频)或电极损耗(高频)产生的寄生电阻。
ESL: 电极或导线产生的寄生电感。

对应的阻抗-频率图示例如下:

对应的阻抗-频率图

具有电阻、电感和电容的电路里,对交流电(噪声)所起的阻碍作用叫做阻抗  (Impedance), 用 Z 表示 。

ω角频率:描述物体振动快慢的物理量,频率、角频率和周期的关系为ω = 2πf
从|Z|/ESR-F曲线我们可以看出,在低频范围,电容与理想电容(红色曲线)接近,阻抗与频率成反比,ESR反映出电介质分极延迟的介质损耗。在自谐振点附近,阻抗受寄生电感及电极比电阻影响,偏离理想值,达到最小。当频率高于自谐振点,电容呈感性,阻抗增加。

四、    温升/自发热特性
将直流额定电压产品用在交流电压的电路或者脉冲电压的电路中时,由于会通过交流电压或者脉冲电压,会存在由于介电损耗引起的发热情况。

对DC100V以下产品,在环境温度为25℃的状态下测定时,产品本身的自发热温度在20℃以内,应确保在实机中电容器的表面温度在最高使用温度范围内使用。

关于电容器的自生热,请参考技术数据表中的正弦波纹波电流作为参考数据。还请使用设计辅助工具 (村田片状电容器特性数据库) 来获得仿真设计电路的参考数值。

示例图如下:

示例图

 

声明:本文为原创文章,转载需注明作者、出处及原文链接

技术文章

相关文章

最新内容

关注微信公众号,抢先看到最新精选资讯

关注村田中文技术社区微信号,每天收到精选设计资讯