PCB设计中关于反射的那些事!

围观: 326

在国外能碰到许多二三十年工作经验的工程师,帮助他们沟通的工具不是PPT,不是仿真结果,不是测试结果,而是一张纸和一支笔。

很佩服他们可以用一张纸一支笔给你勾绘出一个电路,一条波形,一种debug的方案。曾有一个老工程师告诉我,当你用场的角度去理解电路上的器件的时候,一切将会变得简单起来。

PCB设计中关于反射的那些事!

什么叫场的角度理解分立器件?在这个世界里,容抗是Xc=1/(2πfC) ,感抗是XL= 2πfL=ωL 。

这两个公式中的f与ω指的不是我们的信号频率,而是正弦波的频率与角频率。

在这里,我们要感谢伟大的让•巴普蒂斯•约瑟夫•傅立叶——简称傅立叶,对,就是发明傅立叶变化的那个人。

所以在大家眼中看到的信号是这样的:

信号

“反射”的心路历程

我们在介绍信号完整性的时候通常会说“当传输延时大于六分之一的信号的上升时间时,需要考虑信号完整性问题”,于是乎教科书里面都会配上一副类似于这样表现上升时间或者传输延时与反射的图片:

上升时间或者传输延时与反射

集总的世界

大家知道,信号是以电磁波的形式传递的。

波从一个介质入射到另一个介质时,会产生反射。同样的,当我们信号传输遇见阻抗不连续时,信号会产生反射。

透射波

一些经验公式

这是一个1GHz的信号,上升沿大概在0.1ns左右。大家想到了什么?


是的,DDR3的时钟信号。

五倍频谐波合成一个波形,上升沿时间为信号周期的十分之一,符合我们一切对信号完整性的预期。

该信号五倍频率处的这个谐波称之为最高次有效谐波,我们前文中说的集总参数与分布参数界限的λ/20,指的就是最高次有效谐波的λ/20。所以一个1GHz的信号(注意这里说的是信号,不是正弦波),通常他的λ/20是60mil。

信号五倍频率

路的反射

我们发现在上方的反弹图中传输延时远远大于信号的上升时间,在计算反射时我们用的电压实际上是信号高电平的电压,并没有关注上升沿过程中其他电平的状态,但实际上的情况并不是这样,可是如果我们如果把上升沿的状态加入算式中,那这游戏可就没法玩了。

路的反射

场的反射

来到了场的领域,我们要做的第一件事就是把我们的波形拆开,让我们先来看看之前说过的测试点的问题。

为了将问题简化,我们假定一个这样的条件:

场的反射

反射疑云

最近听到一个理论,说大数据时代,人们只需要知其然,不需要知其所以然。想象一下,当我们要做一个项目时,我们可以轻而易举的知道一些其他类似项目哪些结构成功了哪些结构失败了,我们还需要理论分析干嘛呢?

这句话到底有没有道理大家仁者见仁智者见智,下面我们继续来解决我们的反射问题:Breakout区域有一次阻抗不连续,但走出该区域之后,走线从细变宽,会增加一次反射,那是不是全程按照breakout区域走线会比较好?

场的反射

看得懂的电磁场理论

从初中甚至更小,我们就接触到了电路,把电压比作水源的高度,电流比做水流,表征电压与电流关系的电阻就是水管的大小。从初中到大学毕业工作(排除专门学过电磁场,并且深入理解了的),我们一直这么理解的。因为电路、电压、电流、电阻的概念就是对照现实中看得到的水路、水压、水流和水阻而来的,非常直观、形象,并且长期以来感觉没什么问题,所以非常的深入人心。

看得懂的电磁场理论


文章转载自:高速先生

文章分类

相关文章

最新内容

关注微信公众号,抢先看到最新精选资讯

关注村田中文技术社区微信号,每天收到精选设计资讯